Nucleation of rupture under slip dependent friction law: Simple models of fault zone

نویسندگان

  • J.-P. Ampuero
  • J.-P. Vilotte
  • F. J. Sánchez-Sesma
چکیده

[1] The initiation of frictional instability is investigated for simple models of fault zone using a linearized perturbation analysis. The fault interface is assumed to obey a linear slipweakening law. The fault is initially prestressed uniformly at the sliding threshold. In the case of antiplane shear between two homogeneous linearly elastic media, space-time and spectral solutions are obtained and shown to be consistent. The nucleation is characterized by (1) a long-wavelength unstable spectrum bounded by a critical wave number; (2) an exponential growth of the unstable modes; and (3) an induced off-fault deformation that remains trapped within a bounded zone in the vicinity of the fault. These phenomena are characterized in terms of the elastic parameters of the surrounding medium and a nucleation length that results from the coupling between the frictional interface and the bulk elasticity. These results are extended to other geometries within the same formalism and implications for three-dimensional rupture are discussed. Finally, internal fault structures are investigated in terms of a fault-parallel damaged zone. Spectral solutions are obtained for both a smooth and a layered distribution of damage. For natural faults the nucleation is shown to depend strongly on the existence of a internal damaged layer. This nucleation can be described in terms of an effective homogeneous model. In all cases, frictional trapping of the deformation out of the fault can lead to the property that arbitrarily long wavelengths remain sensitive to the existence of a fault zone. INDEXTERMS: 7209 Seismology: Earthquake dynamics and mechanics; 3220 Mathematical Geophysics: Nonlinear dynamics;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A constitutive model for fault gouge deformation in dynamic rupture simulations

In the context of numerical simulations of elastodynamic ruptures, we compare friction laws, including the linear slip-weakening (SW) law, the Dieterich-Ruina (DR) law, and the Free Volume (FV) law. The FV law is based on microscopic physics, incorporating Shear Transformation Zone (STZ) Theory which describes local, non-affine rearrangements within the granular fault gouge. A dynamic state var...

متن کامل

Nucleation and early seismic propagation of small and large events in a crustal earthquake model

[1] Earthquake nucleation and early seismic propagation are studied in a two-dimensional strike-slip fault model with depth-variable properties. The fault is governed by the Dieterich-Ruina rate and state friction law. We use an efficient and rigorous numerical procedure for elastodynamic analysis of earthquake sequences on slowly loaded faults developed by Lapusta et al. [2000]. We find that f...

متن کامل

Effects of subducted seamounts on megathrust earthquake nucleation and rupture propagation

[1] Subducted seamounts have been linked to interplate earthquakes, but their specific effects on earthquake mechanism remain controversial. A key question is under what conditions a subducted seamount will generate or stop megathrust earthquakes. Here we show results from numerical experiments in the framework of rateand state-dependent friction law in which a seamount is characterized as a pa...

متن کامل

Existence of continuum complexity in the elastodynamics of repeated fault ruptures

What are the origins of earthquake complexity? The possibility that some aspects of the complexity displayed by earthquakes might be explained by stress heterogeneities developed through the self-organization of repeated ruptures has been suggested by some simple self-organizing models. The question of whether or not even these simple self-organizing models require at least some degree of mater...

متن کامل

The competitive effects on slip pulse properties of low - velocity fault zones and strong 1 velocity - weakening friction 2

The damaged rock around mature faults forms a zone of low seismic wave 24 velocities, which can perturb important earthquake rupture properties. In particular, waves 25 reflected within the fault zone structure can induce short-duration slip pulses, an apparently 26 predominant earthquake rupture mode. Another known mechanism to generate slip pulses is 27 strong velocity-weakening friction. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002